MATH 5061 Problem Set 1¹ Due date: Jan 27, 2021

Problems: (Please hand in your assignments via Blackboard. Late submissions will not be accepted.)

- 1. Let M be the Möbius band defined as the topological quotient of $[0,1] \times \mathbb{R}$ by the equivalence relation $(0,t) \sim (1,-t)$ for any $t \in \mathbb{R}$.
 - (a) Show that M can be equipped with a differentiable structure which is consistent with the topology.
 - (b) Prove that M is not orientable.
 - (c) Show that \mathbb{RP}^2 can be obtained by gluing together a disk with a Möbius band along their boundary. Use this to show that \mathbb{RP}^2 is not orientable.
- 2. Construct an explicit diffeomorphism between \mathbb{S}^2 and \mathbb{CP}^1 .
- 3. Compute the tangent space of SO(n) at the identity matrix I, and use this to compute the dimension of SO(n) as a manifold. What is the tangent space of SO(n) at an arbitrary $A \in SO(n)$.
- 4. Prove that the tangent bundle TM is always orientable as a manifold.
- 5. (a) Show that a rank *n* vector bundle $\pi : E \to B$ is trivial if and only if there exist *n* linearly independent sections $\{s_i\}_{1 \le i \le n}$, i.e. at every point $b \in B$, $\{s_i(b)\}_{1 \le i \le n}$ forms a linearly independent set of the vector space $\pi^{-1}(b)$.
 - (b) Show that the Möbius band as defined in Problem 1 is the total space of a non-trivial vector bundle of rank 1 over S^1 .

¹Last revised on January 19, 2021